Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542133

RESUMO

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurotoxinas/farmacologia , Axônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068993

RESUMO

Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.


Assuntos
Zumbido , Humanos , Células Ciliadas Auditivas Externas , Estereocílios , Som , Estimulação Acústica
3.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137410

RESUMO

Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.

4.
Curr Neuropharmacol ; 21(11): 2227-2232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409546

RESUMO

Defective autophagy in the retinal pigment epithelium (RPE) is involved in retinal degeneration, mostly in the course of age-related macular degeneration (AMD), which is an increasingly prevalent retinal disorder, eventually leading to blindness. However, most autophagy activators own serious adverse effects when administered systemically. Curcumin is a phytochemical, which induces autophagy with a wide dose-response curve, which brings minimal side effects. Recent studies indicating defective autophagy in AMD were analyzed. Accordingly, in this perspective, we discuss and provide some evidence about the protective effects of curcumin in preventing RPE cell damage induced by the autophagy inhibitor 3-methyladenine (3-MA). Cells from human RPE were administered the autophagy inhibitor 3-MA. The cell damage induced by 3-MA was assessed at light microscopy by hematoxylin & eosin, Fluoro Jade-B, and ZO1 immunohistochemistry along with electron microscopy. The autophagy inhibitor 3-MA produces cell loss and cell degeneration of RPE cells. These effects are counteracted dose-dependently by curcumin. In line with the hypothesis that the autophagy machinery is key in sustaining the integrity of the RPE, here we provide evidence that the powerful autophagy inhibitor 3-MA produces dose-dependently cell loss and cell degeneration in cultured RPE cells, while inhibiting autophagy as shown by LC3-II/LC3-I ratio and gold-standard assessment of autophagy through LC3-positive autophagy vacuoles. These effects are prevented dose-dependently by curcumin, which activates autophagy. These data shed the perspective of validating the role of phytochemicals as safe autophagy activators to treat AMD.


Assuntos
Curcumina , Degeneração Macular , Degeneração Retiniana , Humanos , Epitélio Pigmentado da Retina/metabolismo , Degeneração Retiniana/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Autofagia/fisiologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Estresse Oxidativo
5.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371913

RESUMO

The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.

6.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240326

RESUMO

The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.


Assuntos
Células Endoteliais , Degeneração Macular , Humanos , Células Endoteliais/metabolismo , Corioide/metabolismo , Retina/metabolismo , Lâmina Basilar da Corioide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Autofagia
7.
J Clin Med ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37240478

RESUMO

Background: Brain metastases (BMs) is one of the most frequent metastatic sites for non-small-cell lung cancer (NSCLC). It is a matter of debate whether EGFR mutation in the primary tumor may be a marker for the disease course, prognosis, and diagnostic imaging of BMs, comparable to that described for primary brain tumors, such as glioblastoma (GB). This issue was investigated in the present research manuscript. Methods: We performed a retrospective study to identify the relevance of EGFR mutations and prognostic factors for diagnostic imaging, survival, and disease course within a cohort of patients affected by NSCLC-BMs. Imaging was carried out using MRI at various time intervals. The disease course was assessed using a neurological exam carried out at three-month intervals. The survival was expressed from surgical intervention. Results: The patient cohort consisted of 81 patients. The overall survival of the cohort was 15 ± 1.7 months. EGFR mutation and ALK expression did not differ significantly for age, gender, and gross morphology of the BM. Contrariwise, the EGFR mutation was significantly associated with MRI concerning the occurrence of greater tumor (22.38 ± 21.35 cm3 versus 7.68 ± 6.44 cm3, p = 0.046) and edema volume (72.44 ± 60.71 cm3 versus 31.92 cm3, p = 0.028). In turn, the occurrence of MRI abnormalities was related to neurological symptoms assessed using the Karnofsky performance status and mostly depended on tumor-related edema (p = 0.048). However, the highest significant correlation was observed between EGFR mutation and the occurrence of seizures as the clinical onset of the neoplasm (p = 0.004). Conclusions: The presence of EGFR mutations significantly correlates with greater edema and mostly a higher seizure incidence of BMs from NSCLC. In contrast, EGFR mutations do not affect the patient's survival, the disease course, and focal neurological symptoms but seizures. This contrasts with the significance of EGFR in the course and prognosis of the primary tumor (NSCLC).

8.
Neurosci Biobehav Rev ; 148: 105148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996994

RESUMO

Here an overview is provided on therapeutic/neuroprotective effects of Lithifum (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.


Assuntos
Doenças Neurodegenerativas , Neuroproteção , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Autofagia , Plasticidade Neuronal
9.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672156

RESUMO

Cells from glioblastoma multiforme (GBM) feature up-regulation of the mechanistic Target of Rapamycin (mTOR), which brings deleterious effects on malignancy and disease course. At the cellular level, up-regulation of mTOR affects a number of downstream pathways and suppresses autophagy, which is relevant for the neurobiology of GBM. In fact, autophagy acts on several targets, such as protein clearance and mitochondrial status, which are key in promoting the malignancy GBM. A defective protein clearance extends to cellular prion protein (PrPc). Recent evidence indicates that PrPc promotes stemness and alters mitochondrial turnover. Therefore, the present study measures whether in GBM cells abnormal amount of PrPc and mitochondrial alterations are concomitant in baseline conditions and whether they are reverted by mTOR inhibition. Proteins related to mitochondrial turnover were concomitantly assessed. High amounts of PrPc and altered mitochondria were both mitigated dose-dependently by the mTOR inhibitor rapamycin, which produced a persistent activation of the autophagy flux and shifted proliferating cells from S to G1 cell cycle phase. Similarly, mTOR suppression produces a long-lasting increase of proteins promoting mitochondrial turnover, including Pink1/Parkin. These findings provide novel evidence about the role of autophagy in the neurobiology of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas Priônicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Mitocôndrias/metabolismo
10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674920

RESUMO

The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.


Assuntos
Glioma , Proteínas PrPC , Príons , Humanos , Proteínas Priônicas , Príons/metabolismo , Glioma/genética , Autofagia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas PrPC/metabolismo , Microambiente Tumoral
11.
Eur J Neurol ; 30(1): 32-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36086917

RESUMO

BACKGROUND AND PURPOSE: Human neuropathological studies indicate that the pontine nucleus Locus Coeruleus (LC) undergoes significant and early degeneration in Alzheimer's disease. This line of evidence alongside experimental data suggests that the LC functional/structural decay may represent a critical factor for Alzheimer's disease pathophysiological and clinical progression. In the present prospective study, we used Magnetic Resonance Imaging (MRI) with LC-sensitive sequence (LC-MRI) to investigate in vivo the LC involvement in Alzheimer's disease progression, and whether specific LC-MRI features at baseline are associated with prognosis and cognitive performance in amnestic Mild Cognitive Impairment. METHODS: LC-MRI parameters were measured at baseline by a template-based method on 3.0-T magnetic resonance images in 34 patients with Alzheimer's disease dementia, 73 patients with amnestic Mild Cognitive Impairment, and 53 cognitively intact individuals. A thorough neurological and neuropsychological assessment was performed at baseline and 2.5-year follow-up. RESULTS: In subjects with Mild Cognitive Impairment who converted to dementia (n = 32), the LC intensity and number of LC-related voxels were significantly lower than in cognitively intact individuals, resembling those observed in demented patients. Such a reduction was not detected in Mild Cognitive Impairment individuals, who remained stable at follow-up. In Mild Cognitive Impairment subjects converting to dementia, LC-MRI parameter reduction was maximal in the rostral part of the left nucleus. Structural equation modeling analysis showed that LC-MRI parameters positively correlate with cognitive performance. CONCLUSIONS: Our findings highlight a potential role of LC-MRI for predicting clinical progression in Mild Cognitive Impairment and support the key role of LC degeneration in the Alzheimer clinical continuum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Locus Cerúleo/diagnóstico por imagem , Estudos Prospectivos , Progressão da Doença , Disfunção Cognitiva/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética/métodos
12.
Curr Neuropharmacol ; 21(11): 2233-2236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35339181

RESUMO

BACKGROUND: Noradrenergic fibers originating from the locus coeruleus densely innervate limbic structures, including the piriform cortex, which is the limbic structure with the lowest seizure threshold. Noradrenaline (NA) modulates limbic seizures while stimulating autophagy through ß2- adrenergic receptors (AR). Since autophagy is related to seizure threshold, this perspective questions whether modulating ß2-AR focally within the anterior piriform cortex affects limbic seizures. OBJECTIVE: In this perspective, we analyzed a potential role for ß2-AR as an anticonvulsant target within the anterior piriform cortex, area tempestas (AT). METHODS: We developed this perspective based on current literature on the role of NA in limbic seizures and autophagy. The perspective is also grounded on preliminary data obtained by microinfusing within AT either a ß2-AR agonist (salbutamol) or a ß2-AR antagonist (butoxamine) 5 minutes before bicuculline. RESULTS: ß2-AR stimulation fully prevents limbic seizures induced by bicuculline micro-infusion in AT. Conversely, antagonism at ß2-AR worsens bicuculline-induced seizure severity and prolongs seizure duration, leading to self-sustaining status epilepticus. These data indicate a specific role for ß2-AR as an anticonvulsant in AT. CONCLUSION: NA counteracts limbic seizures. This relies on various receptors in different brain areas. The anterior piriform cortex plays a key role in patients affected by limbic epilepsy. The anticonvulsant effects of NA through ß2-AR may be related to the stimulation of the autophagy pathway. Recent literature and present data draw a perspective where ß2-AR stimulation while stimulating autophagy mitigates limbic seizures, focally within AT. The mechanism linking ß2-AR to autophagy and seizure modulation should be extensively investigated.


Assuntos
Anticonvulsivantes , Norepinefrina , Ratos , Animais , Humanos , Norepinefrina/efeitos adversos , Norepinefrina/metabolismo , Bicuculina/efeitos adversos , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Receptores Adrenérgicos
13.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014442

RESUMO

The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.


Assuntos
Bacopa , Metanfetamina , Fármacos Neuroprotetores , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Bacopa/química , Catecolaminas , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012188

RESUMO

Recent evidence shows that methamphetamine (METH) produces mitochondrial alterations that contribute to neurotoxicity. Nonetheless, most of these studies focus on mitochondrial activity, whereas mitochondrial morphology remains poorly investigated. In fact, morphological evidence about the fine structure of mitochondria during METH toxicity is not available. Thus, in the present study we analyzed dose-dependent mitochondrial structural alterations during METH exposure. Light and transmission electron microscopy were used, along with ultrastructural stoichiometry of catecholamine cells following various doses of METH. In the first part of the study cell death and cell degeneration were assessed and they were correlated with mitochondrial alterations observed using light microscopy. In the second part of the study, ultrastructural evidence of specific mitochondrial alterations of crests, inner and outer membranes and matrix were quantified, along with in situ alterations of mitochondrial proteins. Neurodegeneration induced by METH correlates significantly with specific mitochondrial damage, which allows definition of a scoring system for mitochondrial integrity. In turn, mitochondrial alterations are concomitant with a decrease in fission/mitophagy protein Fis1 and DRP1 and an increase in Pink1 and Parkin in situ, at the mitochondrial level. These findings provide structural evidence that mitochondria represent both direct and indirect targets of METH-induced toxicity.


Assuntos
Metanfetamina , Metanfetamina/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Nucleic Acids Res ; 50(14): 7959-7971, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871292

RESUMO

The transcriptional coactivator YAP is emerging as a master regulator of cell growth. In the liver, YAP activity is linked to hepatomegaly, regeneration, dedifferentiation, and aggressive tumor growth. Here we present genomic studies to address how YAP may elicit such profound biological changes in murine models. YAP bound the genome in a TEAD-dependent manner, either at loci constitutively occupied by TEAD or by pioneering enhancers, which comprised a fraction of HNF4a/FOXA-bound embryonic enhancers active during embryonic development but silent in the adult. YAP triggered transcription on promoters by recruiting BRD4, enhancing H3K122 acetylation, and promoting RNApol2 loading and pause-release. YAP also repressed HNF4a target genes by binding to their promoters and enhancers, thus preventing RNApol2 pause-release. YAP activation led to the induction of hepatocyte proliferation, accompanied by tissue remodeling, characterized by polarized macrophages, exhausted T-lymphocytes and dedifferentiation of endothelial cells into proliferative progenitors. Overall, these analyses suggest that YAP is a master regulator of liver function that reshapes the enhancer landscape to control transcription of genes involved in metabolism, proliferation, and inflammation, subverts lineage specification programs by antagonizing HNF4a and modulating the immune infiltrate and the vascular architecture of the liver.


Assuntos
Fígado , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP , Animais , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Macrófagos , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Linfócitos T , Fatores de Transcrição de Domínio TEA/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
16.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630599

RESUMO

The brain area which surrounds the frankly ischemic region is named the area penumbra. In this area, most cells are spared although their oxidative metabolism is impaired. area penumbra is routinely detected by immunostaining of a molecule named Heat Shock Protein 70 (HSP70). Within the area penumbra, autophagy-related proteins also increase. Therefore, in the present study, the autophagy-related microtubule-associated protein I/II-Light Chain 3 (LC3) was investigated within the area penumbra along with HSP70. In C57 black mice, ischemia was induced by permanent occlusion of the distal part of the middle cerebral artery. Immunofluorescence and electron microscopy show that LC3 and HSP70 are overexpressed and co-localize within the area penumbra in the same cells and within similar subcellular compartments. In the area penumbra, marked loss of co-localization of HSP70 and LC3-positive autophagy vacuoles, with lysosomal-associated membrane protein 1 (LAMP1) or cathepsin-D-positive lysosome vacuoles occurs. This study indicates that, within the area penumbra, a failure of autophagolysosomes depends on defective compartmentalization of LC3, LAMP1 and cathepsin-D and a defect in merging between autophagosomes and lysosomes. Such a deleterious effect is likely to induce a depletion of autophagolysosomes and cell clearing systems, which needs to be rescued in the process of improving neuronal survival.


Assuntos
Proteínas de Choque Térmico HSP70 , Lisossomos , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Isquemia/metabolismo , Lisossomos/metabolismo , Camundongos
17.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409135

RESUMO

α-Synuclein (α-syn) is a protein involved in neuronal degeneration. However, the family of synucleins has recently been demonstrated to be involved in the mechanisms of oncogenesis by selectively accelerating cellular processes leading to cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, with a specifically high neurotropism. The molecular bases of this biological behavior are currently poorly understood. Here, α-synuclein was analyzed concerning the protein expression in PDAC and the potential association with PDAC neurotropism. Tumor (PDAC) and extra-tumor (extra-PDAC) samples from 20 patients affected by PDAC following pancreatic resections were collected at the General Surgery Unit, University of Pisa. All patients were affected by moderately or poorly differentiated PDAC. The amount of α-syn was compared between tumor and extra-tumor specimen (sampled from non-affected neighboring pancreatic areas) by using in situ immuno-staining with peroxidase anti-α-syn immunohistochemistry, α-syn detection by using Western blotting, and electron microscopy by using α-syn-conjugated immuno-gold particles. All the methods consistently indicate that each PDAC sample possesses a higher amount of α-syn compared with extra-PDAC tissue. Moreover, the expression of α-syn was much higher in those PDAC samples from tumors with perineural infiltration compared with tumors without perineural infiltration.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , alfa-Sinucleína/metabolismo , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
18.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326535

RESUMO

Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of ß- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene.

19.
Cancers (Basel) ; 14(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326570

RESUMO

Evidence has been recently provided showing that, in baseline conditions, GBM cells feature high levels of α-syn which are way in excess compared with α-syn levels measured within control astrocytes. These findings are consistent along various techniques. In fact, they are replicated by using antibody-based protein detection, such as immuno-fluorescence, immuno-peroxidase, immunoblotting and ultrastructural stoichiometry as well as by measuring α-syn transcript levels at RT-PCR. The present manuscript further questions whether such a high amount of α-syn may be induced within astrocytes, which are co-cultured with GBM cells in a trans-well system. In astrocytes co-cultured with GBM cells, α-syn overexpression is documented. Such an increase is concomitant with increased expression of the stem cell marker nestin, along with GBM-like shifting in cell morphology. This concerns general cell morphology, subcellular compartments and profuse convolutions at the plasma membrane. Transmission electron microscopy (TEM) allows us to assess the authentic amount and sub-cellular compartmentalization of α-syn and nestin within baseline GBM cells and the amount, which is induced within co-cultured astrocytes, as well as the shifting of ultrastructure, which is reminiscent of GBM cells. These phenomena are mitigated by rapamycin administration, which reverts nestin- and α-syn-related overexpression and phenotypic shifting within co-cultured astrocytes towards baseline conditions of naïve astrocytes. The present study indicates that: (i) α-syn increases in astrocyte co-cultured with GBM cells; (ii) α-syn increases in astrocytes along with the stem cell marker nestin; (iii) α-syn increases along with a GBM-like shift of cell morphology; (iv) all these changes are replicated in different GBM cell lines and are reverted by the mTOR inhibitor rapamycin. The present findings indicate that α-syn does occur in high amount within GBM cells and may transmit to neighboring astrocytes as much as a stem cell phenotype. This suggests a mode of tumor progression for GBM cells, which may transform, rather than merely substitute, surrounding tissue; such a phenomenon is sensitive to mTOR inhibition.

20.
Curr Neuropharmacol ; 20(6): 1006-1010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636300

RESUMO

BACKGROUND: The piriform cortex, known as area tempestas, has a high propensity to trigger limbic epileptic seizures. Recent studies on human patients indicate that a resection containing the piriform cortex produces a marked improvement in patients suffering from intractable limbic seizures. This calls for looking back at the pharmacological and anatomical data on area tempestas. Within the piriform cortex, status epilepticus can be induced by impairing the desensitization of AMPA receptors. The mechanistic target of rapamycin complex1 (mTORC1) is a promising candidate. OBJECTIVE: The present perspective aims to link the novel role of the piriform cortex with recent evidence on the modulation of AMPA receptors under the influence of mTORC1. This is based on recent evidence and preliminary data, leading to the formulation of interaction between mTORC1 and AMPA receptors to mitigate the onset of long-lasting, self-sustaining, neurotoxic status epilepticus. METHODS: The perspective grounds its method on recent literature along with the actual experimental procedure to elicit status epilepticus from the piriform cortex and the method to administer the mTORC1 inhibitor rapamycin to mitigate seizure expression and brain damage. RESULTS: The available and present perspectives converge to show that rapamycin may disrupt the seizure circuitry initiated in the piriform cortex to mitigate seizure duration, severity, and brain damage. CONCLUSION: The perspective provides a novel scenario to understand refractory epilepsy and selfsustaining status epilepticus. It is expected to provide a beneficial outcome in patients suffering from temporal lobe epilepsy.


Assuntos
Receptores de AMPA , Estado Epiléptico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Convulsões/induzido quimicamente , Sirolimo/efeitos adversos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Serina-Treonina Quinases TOR/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...